
Appendix D: API Data Methodology and Limitations/Assumptions

Overview

For this pilot, PBOT asked that all mobility providers comply with an API specification based off of a
version of the City of Los Angeles’s Mobility Data Specification (MDS) available as of the time that the
pilot permit application was posted. Portland’s Bureau of Technology Services (BTS) Vertical Applications
team created an application to manage the availability state of vehicles and perform some geospatial
analysis of availability and trips, relating them to assets and geometric areas around the city to assist
with permit compliance and data analysis. This analysis was performed by using an API server that
managed interaction with the data warehouse created for this pilot. The integration application
downloaded data from mobility providers, querying the API server for how the retrieved geometries
related to assets and geometries stored in the data warehouse. The figure below illustrates this flow of
data as well as providing some examples of products created from the data warehouse by PBOT data
analysts.

Applications and frameworks used

BTS wrote both the integration application and API server using .NET Core 2.1 for the application
framework. The data warehouse used PostgreSQL 9.6 with the PostGIS extension installed.

Data Warehouse

BTS’s team created a data warehouse to aid in analyzing data retrieved from mobility providers and to
efficiently store data for the duration of the pilot. The data warehouse followed the principles of data
warehouse schema construction as much as possible, creating facts and shared dimensions to relate
them, although some fact data -- notably collisions -- related to trips data. The figure below illustrates
some of the fact and dimension relationships that define the data warehouse for trip data. Using this
structure, we were able to efficiently store the paths used most often by scooter users and should be
able to use that data to analyze Portland’s street and bicycle network as defined by use, rather than by
geographic location.

In order to relate trips and availability state in near real-time to geometric objects such as street
segments, neighborhoods, neighborhood pattern areas, and bicycle network, the integration application
would make API server calls with the geometric object to perform that query as it processed responses
from the mobility providers. In order to relate trips to street segments or the bicycle network, each
object was stored as a geometry consisting of a 100-foot octagon around the midpoint of the object. An
octagon provided a compromise of performance during processing. If a trip intersected that object,
then a bridge record was created to show that the trip touched that object.

API limitations

In order to implement the system described above, the integration application became a long-running
service. This architecture posed problems and required regular maintenance to keep running. This was
a result of the API specification used for this pilot and the interpretation of mobility providers. The API
specification required that availability data be provided in a manner that allowed historic queries to
show which vehicles were available at any time. Unfortunately, some mobility providers did not
maintain availability data in a manner that allowed them to implement that fully, and instead the
availability API was implemented as a real-time feed of which scooters are available as of the API call.
This forced BTS to create this long-running service that could maintain records of availability status.
While this implementation was not the intent of the permit API requirements, having standardization of
implementations is preferable to maintaining different code bases for different providers.

The figure below illustrates the workflow of how BTS created availability state records.

In addition to availability data limitations and compromises, the API specification did not describe how
mobility providers should implement paging when data becomes too large to return in one response.
Providers diverged on how to implement this mechanism, and thus required separate implementations

to query APIs for data. While the ideal would have been one cade base to query all mobility provider
APIs, the API specification was not drafted well enough to achieve that goal.

Fortunately, both of these limitations are addressed in newer versions of the Mobility Data
Specification, so newer permits should use them for guidance on how to avoid these issues in their
implementations.

